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C O N S P E C T U S

Unactivated Csp3-H bonds are ubiquitous in organic
chemicals and hydrocarbon feedstocks. However, these

resources remain largely untapped, and the development of
efficient homogeneous methods for hydrocarbon function-
alization by C-H activation is an attractive and unresolved
challenge for synthetic chemists. Transition-metal catalysis
offers an attractive possible means for achieving selective,
catalytic C-H functionalization given the thermodynami-
cally favorable nature of many desirable partial oxidation
schemes and the propensity of transition-metal complexes
to cleave C-H bonds. Selective C-H activation, typically by
a single cleavage event to produce M-Csp3 products, is possible through myriad reported transition-metal species. In contrast, sev-
eral recent reports have shown that late transition metals may react with certain substrates to perform multiple C-H activations,
generating MdCsp2 complexes for further elaboration. In light of the rich reactivity of metal-bound carbenes, such a route could
open a new manifold of reactivity for catalytic C-H functionalization, and we have targeted this strategy in our studies.

In this Account, we highlight several early examples of late transition-metal complexes that have been shown to generate metal-
bound carbenes by multiple C-H activations and briefly examine factors leading to the selective generation of metal carbenes
through this route. Using these reports as a backdrop, we focus on the double C-H activation of ethers and amines at iridium
complexes supported by Ozerov’s amidophosphine PNP ligand (PNP ) [N(2-PiPr2-4-Me-C6H3)2]-), allowing isolation of unusual
square-planar iridium(I) carbenes. These species exhibit reactivity that is distinct from the archetypal Fischer and Schrock
designations.

We present experimental and theoretical studies showing that, like the classical square-planar iridium(I) organometallics, these
complexes are best described as nucleophilic at iridium. We discuss the classification of this reactivity in the context of a scheme
originally delineated by Roper. These “Roper-type” carbenes perform a number of multiple-bond metatheses leading to atom and
group transfer from electrophilic heterocumulene (e.g., CO2, CS2, PhNCS) and diazo (e.g., N2O, AdN3) reagents. In one instance, we
have extended this methodology to a process for catalytic C-H functionalization by a double C-H activation-group transfer process.

Although the scope of these reactions is currently limited, these new pathways may find broader utility as the reactivity of late-
metal carbenes continues to be explored. Examination of alternative transition metals and supporting ligand sets will certainly be
important. Nonetheless, our findings show that carbene generation by double C-H activation is a viable strategy for C-H func-
tionalization, leading to products not accessible through traditional Csp3-H activation pathways.

Introduction

The catalytic activation and functionalization of

normally inert carbon-hydrogen bonds has been

a long-standing goal of organometallic chemis-

try, and progress in this area has been extensively

reviewed.1 Most schemes for C-H functionaliza-

tion involve an initial C-H cleavage step, which

can proceed by numerous mechanisms such as
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oxidative addition, electrophilic activation, or σ-bond metath-

esis. Irrespective of mechanism, this initial step leads to the

formation of a singly bonded M-Csp3 species, which may be

further elaborated. However, in addition to the difficulty asso-

ciated with achieving catalytic turnover, this approach limits

the kinds of products that may be formed to those generated

by functionalizing a metal-carbon single bond. As a result,

there are few successful examples of catalytic Csp3-H func-

tionalization at transition-metal centers.2

One approach to functionalizing the intermediate M-Csp3

complexes is to utilize a second C-H cleavage event, often a

�-hydrogen elimination to generate alkene. This method was

first introduced by Crabtree3 and has seen major improve-

ments in scope and efficiency with the advent of pincer-type

ligands,4 in some cases allowing the transformation to pro-

ceed in the absence of a hydrogen acceptor.5 Nevertheless,

the most common schemes employ olefins as terminal oxi-

dants, so their utility is somewhat hampered by the fact that

one olefin is simply being traded for another.6

One might easily envision, however, that the second C-H

cleavage is not required to be a �-elimination. Instead, if R-hy-

drogen migration ensues, a metal carbene complex (an iso-

mer of the metal-bound olefin) will be formed. Generation of

an MdCsp2 species by such a route could offer new possibili-

ties for catalytic C-H functionalization, particularly in light of

the rich reactivity previously demonstrated for metal-bound

carbenes.7 We were intrigued by this possibility since, at the

outset of our work, there were few examples of well-defined

reactivity for any MdCsp2 complexes generated by multiple

C-H activations.8

In this Account, we examine the generation of metal car-

benes by multiple C-H activations with a focus on recent

work from our own laboratory using pincer-supported iridium

centers to effect this transformation. We also discuss our find-

ings regarding the subsequent reactivity of square-planar iri-

dium(I) carbenes, which diverges in important ways from the

classical Fischer- and Schrock-type designations and instead

falls nicely into a continuum of metal- and ligand-based car-

bene reactivity originally suggested by Roper. These findings

have facilitated the discovery of several new atom- and group-

transfer reactions and have allowed the development of a cat-

alytic C-H functionalization protocol via generation of metal

carbenes, clearly demonstrating the distinct reactivity avail-

able at metal-carbon multiple bonds as well as the potential

value of these species in new C-H oxidation schemes.

Generation of Late Metal Carbenes by
Multiple C-H Activations: Background
The first indication that late metals may be capable of gener-

ating carbenes by R,R-dehydrogenation came from the labo-

ratory of Shaw, who reported that a pincer iridium complex

(1), formed from reaction of an iridium(I) synthon with 1,5-

bis(di-tert-butylphosphino)pentane, would release hydrogen

upon sublimation to afford the pincer-type carbene complex

2 (Scheme 1).9 This reaction is certainly helped by chelate

assistance from the strong phosphine donors, stabilizing the

carbene that is ultimately formed, but the finding was very

important in showing that R,R-dehydrogenation and loss of H2

to afford a stable metal carbene can be a favorable process at

late metals. In fact, it was this finding that inspired much of the

work we have undertaken at pincer-supported iridium centers.

Several other examples of chelate-assisted carbene forma-

tion via multiple C-H activations have been reported,10 but

the catalytic potential of this route is generally limited since

the chelate assistance not only favors carbene formation but

also prevents functionalization and release since the carbene

must be linked to at least one strong donor that can be diffi-

cult to labilize. Thus, Carmona’s 1992 report of selective dou-

ble C-H activation of cyclic ethers to generate the corres-

ponding Fischer-type carbenes was a major advance for this

field.11 The [Tp*]Ir(C2H4)2 complex (3) was shown to form het-

eroatom-substituted carbenes from tetrahydrofuran, 2-meth-

yltetrahydrofuran, 1,3-dioxolane, and 1,4-dioxane (Scheme 2,

Tp* ) HB(3,5-Me2-pz)3-). For this system, competitive degra-

dation to an allyl hydride (4) was inevitably observed, account-

ing for between 20% and 60% of the iridium-containing

product. Clearly a quantitative method would be needed in

order to implement this process in any catalytic cycle.

Shortly after Carmona’s seminal discovery, Taube reported

that reduction of OsIII(NH3)4(CF3SO3)3 with Zn/Hg amalgam in

THF affords an octahedral osmium(II) product with carbene

and dihydrogen ligands.12 This system also generates car-

benes by double C-H activation of 1,4-dioxane and tetrahy-

dropyran. Unlike [Tp*]Ir(C2H4)2 (3), Taube’s system forms the

SCHEME 1. Shaw’s Chelate-Assisted Formation of an Iridium
Carbenea 9

a coe ) cyclooctene.
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carbene in good yield (>80%), and the reaction completes in

less than 1 h at ambient temperature.

In the years following Taube’s paper, the generation of car-

benes by double C-H activation was shown to be a more

general phenomenon, and Bergman (Ir),8a Bercaw (Pt),13 Caul-

ton (Ru, Os),14 and Crabtree (Ir)15 all published examples of

systems capable of forming heteroatom-substituted carbenes

by multiple C-H cleavage events. Carmona also reported vari-

ants of the original [Tp*]Ir(C2H4)2 system that could generate

heteroatom-substituted carbenes cleanly from a large num-

ber of ethers and amines.16

Formation and Decomposition of Pincer-
Supported Iridium Carbenes
Against this backdrop, we noted that although pincer-sup-

ported iridium complexes had been extensively utilized in R,�-

dehydrogenation schemes (affording olefins), few inves-

tigations had been performed regarding the dehydrogena-

tion of heteroatom-containing substrates by these complex-

es.17 Thus, we began our studies by examining the reactivity

of tert-butyl methyl ether (MTBE) with pincer-type 14-electron

iridium(I) species, which could be generated by reductive

dehydrogenation or dehydrohalogenation. For MTBE, �-hy-

drogen elimination would be precluded by the presence of

oxygen at the �-position, allowing R-migration to be favored.

Using (iPrAnthraphos)Ir, which contains a standard PCP donor

set, we noted that a series of facile C-H and C-O bond cleav-

age events led to the formation of trans-(iPrAnthraphos)Ir-

(CO)(H)2 (5) with release of isobutylene (Scheme 3, top).18

However, utilizing the amidophosphine PNP ligand devel-

oped by Ozerov and co-workers,19 we cleanly isolated the iri-

dium(I) carbene (PNP)IrdC(H)OtBu (8) as a kinetic product

(Scheme 3), an electronic and structural relative of Fryzuk’s

amidophosphine-supported iridium methylidene.20 A combi-

nation of experimental and computational studies have indi-

cated that carbene generation proceeds by a fast C-H

oxidative addition to afford the observable hydrido alkyl inter-

mediate (PNP)Ir(H)(CH2OtBu) (7),21,22 followed by slow R-hy-

drogen migration and release of dihydrogen to generate the

final product 8 (Scheme 3).23 A single-crystal X-ray diffrac-

tion (XRD) structure of carbene 8 revealed that, although the

carbene and amide ligands are canted slightly out of the

square plane, they are precisely aligned with each other to

allow a push-pull interaction between the filled pπ orbital of

the amido donor and the empty pπ orbital of the tert-bu-

toxymethylidene ligand, and it seems likely that this interac-

tion contributes at least partially to the stabilization of 8

relative to the unobserved (iPrAnthraphos)IrdC(H)OtBu.

Thermolysis of carbene 8 led to formation of a trans-dihy-

drido carbonyl (9), similar to the Anthraphos system, leading

us to formulate a mechanism for decarbonylation of MTBE via

an iridium tert-butoxymethylidene for both systems (Scheme

4). The regioselective nature of the decarbonylation, which

exclusively afforded the trans-dihydrido isomer, was attrib-

SCHEME 2. Generation of a Cyclic Carbene at Tp*-Supported Iridium(III)11

SCHEME 3. Reaction of Pincer-Supported Iridium Complexes with MTBE
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uted to formation of an iridium(III) hydrido formyl species by

elimination of isobutylene, followed by stereoselective R-hy-

drogen migration from the formyl ligand to iridium, a step

with considerable literature precedent.24 This hypothesis was

supported by the quantitative formation of the same dihy-

drido carbonyl upon reaction of (PNP)IrH2 with formal-

dehyde.18,25

We proposed that the key step, elimination of isobutylene,

was promoted by a high-lying Lewis-basic Ir(dz2) orbital upon

90° rotation of the carbene unit (Scheme 4). This type of

behavior would be consistent with the well-known Lewis basic-

ity of square-planar, d8 organometallic complexes.26 It would

also indicate that, in contrast to the early metal Fischer car-

benes that are electrophilic at carbon, the reactivity of these

low-valent, coordinatively unsaturated complexes would be

dominated by a high-lying, nucleophilic Ir(dz2) orbital. It was

this finding that guided further reactivity studies (vide infra).

Although MTBE was an ideal test substrate due to the pres-

ence of a single site for directed C-H activation with no pos-

sibility for �-elimination, the facile decomposition of the

carbene at elevated temperatures and a desire to extend

the generality of the R,R-dehydrogenation led us to examine

the dehydrogenation of a series of ethers by (PNP)Ir.22 sec-

Butyl methyl ether (SBME), n-butyl methyl ether (NBME), and

tert-amyl methyl ether were found to generate alkoxycarbenes

under conditions similar to those employed for MTBE. This

result is consistent with previous observations of high selec-

tivity for methyl C-H activation in the presence of methyl-

ene or methine protons.27 The observation of carbenes as sole

products from C-H activation of SBME and NBME shows that

either (PNP)Ir exhibits a high affinity for the less encumbered

H-CH2O bonds or, if methylene of methine C-H activation is

accomplished, such a pathway is unproductive.28

A carbene complex was also obtained by R,R-dehydroge-

nation of tetrahydrofuran (THF) at (PNP)Ir. Although this result

shows that �-elimination may be avoided in some cases, only

R,�-dehydrogenation to afford vinyl ethers was observed for

1,4-dioxane and diethyl ether.22 Compared with the results of

Carmona,29 Taube,12 and Bercaw,13 who obtained carbenes

from these substrates, these findings highlight the subtle fac-

tors that can influence R- versus �-elimination and stabiliza-

tion of carbene versus alkene.30

These early results, combined with reports from Car-

mona29 and Crabtree,15 led us to consider whether square-

planar aminocarbene complexes might be accessed by a

similar double C-H activation approach. As predicted, expo-

sure of (PNP)IrH2 (6) to norbornene (1 equiv) in the pres-

ence of methyl amines led to generation of iridium carbene

complexes (Scheme 5, TMEDA as substrate).31 However, in

these cases, six-coordinate iridium(III) trans-dihydrido ami-

nocarbene complexes were formed rather than the square-

planar iridium(I) carbenes observed for methyl ethers.

Although reversible isomerization to cis-dihydrido isomers

could be thermally induced, loss of H2 from the cis-dihy-

drido aminocarbenes was not observed. Thus, we proposed

that the reluctance of these complexes to lose dihydrogen

is related to the more strongly donating nature of the ami-

nocarbenes, which confers a greater basicity to the iridium

center. This formulation is supported by single-crystal XRD

analysis and NMR spectroscopy, which show a significant

amount of N f C π-donation and indicate that the ami-

nocarbene complexes are best represented by the two lim-

iting resonance structures provided in eq 1.

SCHEME 4. Mechanism of MTBE Decarbonylation at (iPrAnthraphos)Ir and (PNP)Ir via an Alkoxycarbene

SCHEME 5. Dehydrogenation of TMEDA at (PNP)Ira

a TMEDA ) N,N,N′,N′-tetramethylethylenediamine.
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Divergent Carbene Reactivity
Based on the differences in coordination number, formal oxi-

dation state, and frontier molecular orbitals, we expected that

the iridium(I) alkoxycarbenes and iridium(III) dihydrido ami-

nocarbenes would exhibit divergent reactivity. Exposure of the

aminocarbene complex derived from TMEDA (10) to carbon

monoxide effected a 1,2-hydride migration to generate a car-

bonyl adduct of iridium(III) (11), as shown in Scheme 6. In con-

trast, reaction of iridium(I) alkoxycarbene 8 with excess carbon

monoxide resulted in an unusual migratory insertion of the

carbene into the Ir-N bond of the PNP ligand to afford dicar-

bonyl complex 12 (Scheme 6).31 Although insertion reactions

of metal-bound carbenes are relatively common, this reac-

tion represents, to the best of our knowledge, the first exam-

ple of such an insertion into a metal-amide bond.32

With the exception of these types of ligand migration, reac-

tivity of the carbenes with Lewis bases was generally unpro-

ductive. Such an outcome was not entirely unexpected in light

of the degradation that had previously been observed for 8
and the well-established nucleophilicity of square-planar d8

organometallics.26 However, it was somewhat surprising that

backbonding from the electron-rich iridium center reduced the

electrophilicity of the carbene to such an extent that nucleo-

philic attack at the carbene was not observed, even for amine

and alkoxide nucleophiles. This observation led us to pursue

potentially new reactivity of these square-planar complexes

with electrophiles.

Reaction with Heterocumulene
Electrophiles
Although alkoxycarbene 8 demonstrated little productive reac-

tivity with Lewis bases, the complex was found to exhibit a

wealth of unique reactivity with electrophilic heterocumulenes.

The initial discovery was somewhat fortuitous, in that CO2 was

chosen as an electrophilic C1 synthon that also displays a rich

coordination chemistry, including several examples with irid-

ium(I).33 Exposure of carbene 8 to an atmosphere of CO2 led

to quantitative generation of the carbonyl adduct (PNP)Ir-CO

(13) with expulsion of tert-butyl formate (eq 2), a remarkable

and unusual example of direct oxygen-atom abstraction from

CO2.23,34 In light of previous results from Mayer’s laboratory

regarding the oxidative addition of CO2 and other heterocu-

mulenes,35 we hypothesized that formation of the stable iri-

dium carbonyl complex might also provide driving force for

the decarbonylation of other oxygen-containing heterocumu-

lenes. As expected, sulfur-atom and nitrene-group transfer

were realized from carbonyl sulfide and phenyl isocyanate,

respectively (eqs 3 and 4).

Subsequent mechanistic studies performed in our lab, as

well as theoretical studies by Yates and co-workers,21 impli-

cated a mechanism where nucleophilic attack at CO2 is initi-

ated by a high-lying Ir(dz2)-type orbital, followed by cyclization

to form a four-membered iridalactone (Scheme 7), analogous

to the metallacyclobutane demonstrated as an intermediate in

olefin metathesis.36 Subsequent retrocyclization releases the

formate, generating (PNP)Ir-CO (13). Given our own labora-

tory’s extensive studies into the mechanism and utility of the

olefin metathesis reaction,37 it is somewhat surprising that this

“oxygen-atom metathesis” from CO2 proceeds by a similar

mechanism, but it also serves to highlight the utility of metal-

bound carbenes in effecting unusual transformations, espe-

cially the scission of multiple bonds.38 In fact, this oxygen

SCHEME 6. CO-Induced Ligand Migration at (PNP)Ir Carbenes (R )
(CH2)2N(CH3)2)31

SCHEME 7. Mechanism of Oxygen-Atom Transfer from CO2 to
Carbene 8
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extrusion from CO2 is formally related to Schrock’s report of

CdC bond formation upon reaction of a tantalum(V) alky-

lidene with CO2 with generation of polymeric tantalum

oxides,39 and the different reaction outcomes are likely dic-

tated by the differences in MdC bond polarization.

With these results in hand, we suspected that related reac-

tivity would be observed with heterocumulenes lacking oxy-

gen such as carbon disulfide and isothiocyanates. However, an

initial test reaction, in which carbene complex 8 was exposed

to an excess of CS2, led to quantitative generation of an

unusual C2S4
2- adduct (14), where no bond formation to the

carbene was observed (Scheme 8).40 Further experiments

showed this CS2 condensation to be reversible, and extended

heating of a benzene solution of 14 caused the expected sul-

fur-atom transfer to generate tert-butyl thioformate and

(PNP)Ir-CS (15) (Scheme 8). tert-Butyl thioformate and thio-

carbonyl complex 15 were also observed upon slow addition

of CS2 (1 equiv) to a solution of the carbene 8 at ambient tem-

perature, showing that 14 was not an intermediate in the for-

mation of 15 but rather a kinetic product derived from

trapping a CS2 adduct of 8 prior to dithiolactone formation

and release of thioformate. Alkoxycarbene 8 reacted likewise

with PhNCS, ultimately generating the isocyanide adduct

(PNP)Ir-CNPh and tert-butyl thioformate.

These results not only highlight the variety of atom and

group transfer reactivity that can be realized from the isoelec-

tronic series of heterocumulenes but also emphasize the

importance that the electron-rich, coordinatively unsaturated

metal center plays in initiating reactivity. In fact, though metal

carbene complexes have not previously been reported to pro-

mote the reductive condensation of heterocumulenes, this

type of reactivity is often observed for electron-rich, coordina-

tively unsaturated metal complexes such as 8.41 The fact that

products are observed where no bond formation to the car-

bene has occurred serves to cement the crucial role played by

the iridium(I) center in initiating the cooperative bond scis-

sions observed for oxygen- and sulfur-containing heterocu-

mulenes. These findings prompted a density functional theory

(DFT) investigation of the electronic structures of 8 and the iso-

electronic carbonyl (13), thiocarbonyl (15), and isocyanide

complexes, which confirmed the presence and importance of

a high-lying (HOMO-1), nucleophilic Ir(dz2) orbital in promot-

ing the observed reactivity, and the molecular surface of this

orbital is depicted in Figure 1.40

Tandem Double C-H Activation-Group
Transfer Oxidation of Methyl Ethers
The atom and group transfer from heterocumulenes that was

effected by carbene complex 8 suggested a possible new

scheme for the catalytic functionalization of methyl ethers by

a double C-H activation-group transfer process. However, the

disadvantage inherent in these reactions was associated with

the difficulty in realizing any catalytic turnover due to the

reluctance of (PNP)Ir-CO (13) and related complexes to serve

as precursors for further C-H activation, even under forcing

thermal or photolytic conditions.

In light of our previous observation that C-H activation by

(PNP)Ir is not hindered by the presence of N2, it seemed plau-

sible that a change in oxidant from carbonyl reagents

(EdCdO) to the isoelectronic diazo reagents (EdNdN) could

offer a related route that circumvents unreactive carbonyl

SCHEME 8. Activation of CS2 at Carbene 840

FIGURE 1. Molecular surface of Ir(dz2) orbital (HOMO-1) of carbene
complex 8 (top and side views).
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complex 13. Precedent for this approach comes from the sem-

inal experiments of Collman, where a net dinitrogen-for-car-

bonyl ligand exchange was realized at Vaska’s complex upon

reaction with organic azides and loss of isocyanate.42 As pre-

dicted, (PNP)IrdC(H)OtBu (8) reacted smoothly with organic

azides and nitrous oxide to release the corresponding tert-
butyl formimidate or formate, respectively, and (PNP)Ir-N2

(16) (eqs 5 and 6; TMS ) trimethylsilyl, DIPP ) 2,6-diisopro-

pylphenyl, Ad ) 1-adamantyl).43

Dinitrogen adduct 16 proved to be a suitable precursor for

the double C-H activation of MTBE, losing N2 and regenerat-

ing carbene 8 upon thermolysis or photolysis, though ther-

molysis resulted in competitive degradation of 8 to trans-
(PNP)Ir(CO)(H)2 (9), as described above.18 Unfortunately,

neither method proved to be effective in the presence of diazo

oxidants, presumably due to preferential reaction of the unob-

served (PNP)Ir fragment with the oxidant. However, the feasi-

bility of a photocatalytic scheme was initially demonstrated by

a stepwise process, where sequential addition of organic azide

(1 equiv) and photolysis of the resulting solution in the pres-

ence of norbornene with MTBE as solvent allowed several

turnovers to be attained with a high yield of the expected

formimidate (93% relative to added oxidant).43

Ultimately, this method was extended to a true catalytic

scheme (Scheme 9) using a syringe pump to control the rate

of oxidant addition and mild photolytic conditions (i.e., a

bright halogen bulb). Under these conditions, with 10% cat-

alyst loading relative to diazo oxidant, high yields (>90%)

could be achieved for the tandem double C-H activation-

group transfer process to convert MTBE to tert-butyl N-ada-

mantylformimidate.44 SBME and NBME could be converted to

their corresponding formimidates, albeit less efficiently, by a

similar process. To the best of our knowledge, these reactions

represent the only examples of catalytic C-H functionaliza-

tion by double C-H activation to generate a MdCsp2 species,

and they suggest that catalytic C-H functionalization chem-

istry may also be realized for a number of other late-metal

systems previously demonstrated to generate carbenes by this

type of route.

The Continuum of M)C Bond Reactivity
Aside from providing new routes to CdE bond formation via

MdCsp2 complexes, the reactivities that have been observed

for (PNP)IrdC(H)OtBu (8) serve to highlight the variety of pos-

sible pathways for reaction of metal-bound carbenes. Most

descriptions of metal carbenes emphasize two limiting path-

ways where electrophilic or nucleophilic reactivity at CR is tied

to classification as either Fischer-type (coordinated singlet car-

bene) or Schrock-type (coordinated triplet carbene), respec-

tively. However, the behavior we observe is more accurately

described by a nucleophilic metal center that interacts with

electrophilic heterocumulenes, withdrawing electron density

from the coordinated carbene to allow cyclization and ulti-

mately atom or group transfer. This “nucleophilic-at-metal” for-

mulation fits nicely into a scheme outlined by Roper more

than 20 years ago, where the interactions of metal carbenes

with nucleophiles and electrophiles fall into four limiting cat-

egories that may be metal- or carbene-initiated (Figure 2).45

Classical Fischer-type reactivity (top right in Figure 2) is

often observed for heteroatom-substituted carbenes attached

to early metals with electron-withdrawing coligands and has

been exploited frequently to exchange substituents on Fischer-

type complexes (eq 7).46 Nucleophilic reactivity at CR (bottom

SCHEME 9. Demonstrated Catalytic Cycle for Oxidation of MTBE to
tert-Butyl N-Adamantylformimidate by a Double C-H Activation-
Group Transfer Process

FIGURE 2. Possible interactions of metal carbenes with
nucleophilic and electrophilic reagents. Adapted from ref 45.
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left in Figure 2) is most frequently observed for Schrock-type

alkylidenes, for instance in the coordination of trimethylalu-

minum to a well-characterized tantalum(V) methylidene (eq

8).47 However, nucleophilic reactivity at CR has also been

reported for heteroatom-substituted carbenes ligated to suffi-

ciently reduced metal centers.48 Electrophilic reactivity at the

metal center is also common for high-valent alkylidenes, as

demonstrated in the trapping of a titanium(IV) methylidene

with phosphine ligands (eq 9).49

Clearly these designations are not absolute, with many

complexes showing ambiphilic reactivity depending on reac-

tion conditions. Additionally, cooperative substrate activation

across metal-carbon multiple bonds, which falls somewhere

between the top and bottom hemispheres of Figure 2, is

clearly important in several processes such as the Wittig-type

olefination of amides and esters by Tebbe’s reagent, which

does not occur with simple phosphorus ylides.50

The reactivity we have reviewed in this Account serves to

complete the spectrum originally proposed by Roper (Figure

2)45 by showing that, in some cases, a nucleophilic metal cen-

ter can play a key role in initiating reactivity between these

“Roper-type” metal carbenes and electrophiles. This finding is

likely not limited to the (PNP)Ir system and may extend to

other low-valent, coordinatively unsaturated late-metal cen-

ters. Additionally, our findings outline a pathway by which

square-planar carbenes of the late transition metals may gen-

erally exhibit a strong propensity to activate multiply bonded

electrophilic substrates to atom and group transfer, indicat-

ing that this somewhat underutilized class of carbene reactiv-

ity certainly warrants further investigation.

Conclusions and Outlook
We have presented results showing that pincer-supported iri-

dium systems are effective for the R,R-dehydrogenation of cer-

tain ether and amine substrates to generate IrdCsp2 species.

The square-planar alkoxycarbene complexes formed in this

way react in an unusual manner with electrophilic heterocu-

mulenes (e.g., CO2) and diazo reagents (e.g., N2O) to effect

atom and group transfer to the metal-bound carbene, and this

reactivity has allowed the development of a new protocol for

the oxidation of several methyl ethers by a double C-H acti-

vation-group transfer process. This finding represents the first

demonstration of successful catalytic C-H functionalization via

metal carbene generation. Additionally, we have revisited Rop-

er’s framework for understanding the reactivity of metal car-

bene complexes45 and have shown that these pincer-

supported low-valent, coordinatively unsaturated species are

best described as nucleophilic-at-metal, a characteristic that

allows them to perform the facile scission of strong CdE and

NdE bonds.

Clearly much work remains if these methods are to find

general application in synthetic organic chemistry. Although

the scope is currently limited, the new pathways that have

been unveiled may find broader utility as the reactivity of late

metal carbenes continues to be explored. Examination of alter-

native transition metals and supporting ligand sets will cer-

tainly be important in this respect. Nonetheless, these findings

show that carbene generation by double C-H activation is a

viable strategy for C-H functionalization, leading to products

not accessible through traditional Csp3-H activation pathways.
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